Lorentz estimates for degenerate and singular evolutionary systems
نویسندگان
چکیده
منابع مشابه
Lorentz Estimates for Degenerate and Singular Evolutionary Systems
We prove estimates of Calderón-Zygmund type for evolutionary pLaplacian systems in the setting of Lorentz spaces. We suppose the coefficients of the system to satisfy only a VMO condition with respect to the space variable. Our results hold true, mutatis mutandis, also for stationary p-Laplacian systems. PUBLISHED IN J. Differential Equations 255 (9): 2927–2951, 2013
متن کاملCarleman Estimates and Null Controllability of Degenerate/singular Parabolic Systems
We study null controllability properties for parabolic coupled systems with degeneracy and singularity occurring in the interior of the spatial domain. This article is the first to consider a problem with singular coupling terms; previous result cannot be adapted to this situation. In particular, we focus on the well posedness of the problem and then we prove Carleman estimates for the associat...
متن کاملDensity Estimates for a Degenerate/Singular Phase-Transition Model
We consider a Ginzburg-Landau type phase-transition model driven by a p-Laplacian type equation. We prove density estimates for absolute minimizers and we deduce the uniform convergence of level sets and the existence of plane-like minimizers in periodic media.
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملImproved Hardy-poincaré Inequalities and Sharp Carleman Estimates for Degenerate/singular Parabolic Problems
We consider the following class of degenerate/singular parabolic operators: Pu = ut − (xux)x − λ xβ u, x ∈ (0, 1), associated to homogeneous boundary conditions of Dirichlet and/or Neumann type. Under optimal conditions on the parameters α ≥ 0, β, λ ∈ R, we derive sharp global Carleman estimates. As an application, we deduce observability and null controllability results for the corresponding e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2013
ISSN: 0022-0396
DOI: 10.1016/j.jde.2013.07.024